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Hyperspectral imaging technique in the spectral wavelength range of 400–1000 nm was implemented in this
study to determine the total volatile basic nitrogen (TVB-N) contents of grass carp fillets during the frozen stor-
age. The quantitative calibration models were built between the spectral data extracted from the hyperspectral
images and the reference measured TVB-N values by using partial least squares regression (PLSR) and least
squares support vector machines (LS-SVM). The LS-SVM model using full spectral range had a better perfor-
mance than the PLSR model for prediction of TVB-N value with the corresponding coefficients of determination
(R2P) of 0.916 and 0.905, and root-mean-square errors of prediction (RMSEP) of 2.346% and 2.749%, respectively.
Nine optimal wavelengths (420, 466, 523, 552, 595, 615, 717, 850 and 955 nm) were selected using successive
projections algorithm (SPA), and R2

P values of 0.902 and 0.891 with the corresponding RMSEP of 2.782% and
2.807% were obtained from the new optimized models established based on the selected valuable wavelengths.
The best SPA-LS-SVMmodel was used to achieve the visualization map of TVB-N content distribution of the test-
ed fish fillet samples. The results of this study indicated that hyperspectral imaging technique as an objective and
promising tool is capable of determining TVB-N values for evaluation of fish freshness quality in a rapid and non-
destructive way.

Industrial relevance: The study showed that VIS–N
powerful tool for rapid and non-destructive determ
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ghts reserved.
IR hyperspectral imaging technique was an effective and
ination and assessment of fish fillet freshness for the fish
industry.
© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Alongwith the rapid development offishery economyand continually
increasing consumption of aquatic products such as fish aswell as the im-
provement of healthy eating habits, consumers tend to put forwardmuch
higher requirements in fish quality control and assurance. However, the
basic technological problemassociatedwith such seafood is its vulnerabil-
ity and perishability that has a strong impact on the freshness quality
(Rzepka,Özogul, Surówka,&Michalczyk, 2013). In termsoffish freshness,
it is nowadays stimulating great interest and attention to fishers, pro-
ducers, retailers and consumers. Besides, it has always been acknowl-
edged that freshness as one of the most important quality attributes is
common in assessing the quality of fish, either for direct consumption
or as raw materials for the processing industry (Gallart-Jornet, Rustad,
Barat, Fito, & Escriche, 2007; Özogul, Özyurt, Özogul, Kuley, & Polat,
2005) and also it is themost focused property for the consumers because
of its strong relationship with the taste quality (Alimelli et al., 2007;
Quevedo, Aguilera, & Pedreschi, 2010). On the other hand, it has also
beendocumented that freshness is difficult to be clearly definedandaccu-
ratelymeasured due to diverse influencing factors (Poli, Parisi, Scappini, &
Zampacavallo, 2005). In details, the freshness quality features to a large
extent consist of a series of parameters related to safety, nutritional qual-
ity, availability, and edibility, which may be affected mainly by handling,
processing and storage procedures from the catch to the consumers
(Cheng, Sun, Zeng, & Liu, 2013; Norton & Sun, 2008). From another
point of view, physical, chemical, biochemical andmicrobiological chang-
es taking place in the postmortem of fish muscle result in a progressive
loss of freshness characteristic and then influence the final eating quality
of the products (Alimelli et al., 2007).

Therefore, besides the necessities to use novel methods such as rapid
cooling (Sun& Brosnan, 1999; Sun& Zheng, 2006; Sun &Hu, 2003;Wang
& Sun, 2001), drying (Cui, Xu, & Sun, 2004) and other techniques (Xu,
Chen, & Sun, 2001) to preserve product quality, it is much more impera-
tive to determine fish. On one hand, there are many well established tra-
ditional analytical techniques and methods available (Cheng et al., 2013;
Dowlati et al., 2013), they mostly include sensory evaluation involving
the use of sight, tactile and olfaction (Alimelli et al., 2007) and further de-
veloped quality index method (QIM) (Pons-Sanchez-Cascado, Vidal-
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Carou, Nunes, & Veciana-Nogues, 2006), microbial inspection with the
index of total viable counts (Song, Luo, You, Shen, & Hu, 2011), biochem-
ical methods of determining ATP (adenosine triphosphate) degradation
and calculating K value related to high-performance liquid chromatogra-
phy (Mendes, Cardoso, & Pestana, 2009), chemical volatile compound
measurement using solid-phase micro-extraction gas chromatography–
mass spectrometry (Iglesias et al., 2009), protein property determination
by two-dimensional difference gel electrophoresis (Addis et al., 2012) and
proteome analysis (Carrera, Cañas, & Gallardo, 2012), and some other im-
portant spoilage/freshness indicators including total volatile basic nitro-
gen (TVB-N), trimethylamine (TMA) and formation of biogenic amine
(Özogul et al., 2005). These techniques and methods play a pivotal role
in the current research of fish freshness quality and safety evaluation
and inspection and some of them have been used as excellent standards
and supervision regulations with the purpose of maintaining freshness
in the diverse distribution stages and providing consumers with high-
quality products. These techniques and methods, however, need highly
skilled operators, and arenormally expensive, time-consuming, laborious,
tedious, and not always available along the different procedures of the
fishery chain and in particular not suitable for on/in-linemonitoring. Con-
sequently, in order to satisfy an increasing demand for on-site measure-
ment of freshness quality ranging from capture to purchasing by
consumers in the fish industry, non-destructive and rapid techniques
and methods are in urgent need. Previous investigations have evidenced
that some non-invasive and rapid measurement techniques have been
developed for assessment of fish freshness during storage, including
using computer vision (Dowlati, Guardia, & Mohtasebi, S. S., 2012;
Mathiassen, Misimi, Bondø, Veliyulin, & Østvik, 2011; Zion, 2012) for
fishquality grading (Misimi,Mathiassen, & Erikson, 2007), color andfirm-
ness measurement (Quevedo & Aguilera, 2010), and using molecular
spectroscopy for fish freshness evaluation (Cozzolino & Murray, 2012;
Nilsen, Esaiassen, Heia, & Sigernes, 2002) with its main features for
prediction of chemical compositions, and using near infrared reflectance
spectroscopy for origin identification of European sea bass (Xiccato,
Trocino, Tulli, & Tibaldi, 2004), using visible spectroscopy for predicting
sensory scores of cod (Nilsen & Esaiassen, 2005), as well as using front-
face fluorescence spectroscopy (Dufour, Frencia, & Kane, 2003) and
mid-infrared spectroscopy (Karoui et al., 2007) for monitoring fish
freshness. However, using computer vision (Du&Sun, 2005) alone, it can-
not provide chemical composition information of the products, on the
other hand, only spectroscopic techniques cannot directly offer the spatial
distribution and visualization information. To overcome these difficulties,
an imaging technique is necessary tomap theposition of each spatially re-
solved component. As an innovative platform technology, hyperspectral
imaging technique has been emerged to conquer the shortcomings
of spectroscopy and computer vision mentioned above by means of
integrating the techniques of spectroscopy and imaging into one
Motor Illumination

Computer system

Fig. 1. Schematic diagram of main components
system. Generally speaking, a typical spectrometer offers a single
spectrum, I(λ), while imaging provides the intensity at each pixel
of the image, I(x, y). Thus, a spectral image provides a spectrum
at each pixel I(x, y, λ), which can be viewed as a cube of information
(Zhang, Liu, He, & Li, 2012). Therefore, this emerging technique can
create a three-dimensional (3D) dataset that contains many im-
ages of the same object, and each of which is measured at a differ-
ent wavelength. Owing to the abilities of space distinguishing and
spectral resolution, spectral imaging can obtain both the spatial
and spectral information of the object simultaneously (Sun,
2010). Fig. 1 shows the schematic illustration of the hyperspectral
image cube.

Recently, the aptitude of hyperspectral imaging technique has been
widely developed in food quality and safety evaluation and inspection
(Elmasry, Kamruzzaman, Sun, & Allen, 2012; ElMasry, Sun, & Allen,
2012; Feng & Sun, 2012). A number of studies have highlighted the per-
formance of hyperspectral imaging technique coupledwith appropriate
chemometric multivariate analysis and it has been proved that the
technique possesses a great potential for simultaneous assessment of
various chemical constituents without using hazardous chemical re-
agents and was successfully applied for categorization and authentica-
tion of red meat (pork, beef, lamb) (Kamruzzaman, Barbin, ElMasry,
Sun, & Allen, 2012; Kamruzzaman, ElMasry, Sun, & Allen, 2012), assess-
ment and mapping of beef quality related to water, fat, protein con-
tent (ElMasry, Sun, & Allen, 2013), tenderness and color parameters
(Elmasry, Kamruzzaman et al., 2012; ElMasry, Sun et al, 2012) and
water-holding capacity (ElMasry, Sun, & Allen, 2011); detection of poul-
try surface fecal contaminant (Park, Lawrence, Windham, & Smith,
2006) and determination of Enterobacteriaceae on chicken fillets (Feng
& Sun, 2012); prediction and visualization of lamb involving chemical
compositions and pH, color and drip loss (Kamruzzaman, Barbin et al,
2012, Kamruzzaman, ElMasry et al. 2012); study of growth characteris-
tics and differences between species and strains of members of the
genus Fusarium (Williams, Geladi, Britz, & Manley, 2012a, 2012b);
determination of TVC, Enterobacteriaceae and Pseudomonas loads in
chicken breast fillets (Feng & Sun, 2013); assessment of microbial
contamination in porcine meat (Barbin, ElMasry, Sun, Allen, & Morsy,
2012); prediction of moisture, color, pH and protein contents and
quality classification of cooked hams (Talens et al., 2013); grading and
classification of pork (Barbin, Elmasry, Sun and Allen, 2012a, 2012b);
prediction of sensory attributes (Barbin, Elmasry, Sun and Allen,
2012a, 2012b), chemical compositions (Barbin, Elmasry, Sun and
Allen, 2012a, 2012b), and recognition of fresh and frozen–thawed
pork muscles (Talens et al., 2013). In addition, this technique has also
been studied for evaluation of fish and fish product quality with high
performance for classifying fresh Atlantic salmon fillets (Sone, Olsen,
Sivertsen, Eilertsen, & Heia, 2012) and sea bass cultured under different
Camera
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Sample position

Translation stage

of VIS–NIR hyperspectral imaging system.



Table 1
Reference values of TVB-N content (mg N/100 g) measured by a traditional method.

Statistics Calibration Prediction

Minimum 7.83 8.02
Maximum 16.48 15.85
Mean 12.22 11.94
Standard deviation 5.28 5.13
Range 8.65 7.83
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conditions (Costa et al., 2011), determination of microbial spoilage of
salmon flesh (Wu & Sun, 2013), detection of expired vacuum-packed
smoked salmon (Ivorra et al., 2013), analysis of moisture distribution
in farmed Atlantic salmon fillets (He, Wu, & Sun, 2013), measurement
of color features in salmon fillets (Wu, Peng, Li, Wang, Chen and
Dhakal, 2012, Wu, Shi, Wang, He, Bao and Liu, 2012, Wu, Sun and He,
2012) and gilthead sea bream (Costa et al., 2012), evaluation of fish
freshness (Menesatti, Costa, & Aguzzi, 2010), and detection of nematode
in cod fillets (Sivertsen, Heia, Hindberg, & Godtliebsen, 2012; Sivertsen,
Heia, Stormo, Elvevoll, & Nilsen, 2011).

Despite the above investigations, there is no study reported yet
about the determination of TVB-N index for evaluation of fish freshness
using visible and near infrared (VIS–NIR) hyperspectral imaging. There-
fore, in this study, VIS–NIR hyperspectral imaging technique was
applied to evaluate its potential for measurement and prediction of
TVB-N value of grass carp (Ctenopharyngodon idella). The overall objec-
tive of this study aimed to investigatewhether freshness of fish could be
successfully assessed by VIS–NIR hyperspectral imaging.

2. Materials and methods

2.1. Preparation of fish fillet samples

Thirty fresh grass carps each approximately weighting 1.5 kg were
purchased from a local aquatic products market of Sushi in Guangzhou,
China, and immediately transported to the laboratory alive. The fresh
grass carps were slaughtered, beheaded, gutted, skinned, and filleted
and then washed with cold water. One hundred and twenty fillets
with similar sizewere obtained and packaged in plastic film for freezing
storage. All fillets were frozen at −20 °C for 24 h using a cryogenic
refrigerator, these frozen samples were then thawed at 4 °C for 12 h,
which was defined as one freezing–thawing cycle in the current study
for convenience. Thawed samples were again frozen for 24 h, followed
by thawing for different cycles, with the purpose of simulating temper-
ature abuse in supply chains. Samples without freezing–thawing were
referred to as “zero freezing–thawing cycle” and the fish fillets in this
condition were fresh and of superior quality. Thus, the fillet samples
were subjected to zero, one, two, and three freezing–thawing cycles, re-
spectively. And each time the randomly selected thirty fillet samples
were placed on ice for further analysis.

2.2. Determination of TVB-N

TVB-N value was determined by a stream distillation method with
some modifications (Cai, Chen, Wan, & Zhao, 2011). Ten grams of
grass carpmuscle wasminced and thenmixedwith 90 mL of perchloric
acid (0.6 M) and centrifuged at 3000 rpm for 10 min, and the filtrate
was made alkaline by adding 50 mL of 30% sodium hydroxide and dis-
tilled for 5 min in a 8100 Kjeltec Distillation Unit (FOSS Tecator,
Denmark), and 50 mL of distilled water was used as control. The distil-
late was collected in a conical flask containing 50 mL aqueous solution
of boric acid (40 g/L) and a mixed indicator created from dissolution
of 0.1 g of methyl red and 0.1 g of bromocresol green into 100 mL of
95% ethanol. Afterward, the obtained boric acid solution was titrated
with a 0.01 M of hydrochloric acid solution. The TVB-N value was mea-
sured and expressed as mg N/100 g fish muscle according to the con-
sumption of hydrochloric acid. Each analysis was repeated in triplicate.

2.3. Hyperspectral imaging system

A hyperspectral imaging systemwith common pushbroom configu-
ration was applied to obtain the hyperspectral images of grass carp fil-
lets in reflectance mode. This system mainly consisted of a line-scan
imaging spectrograph (Imspector V10E, Spectral Imaging Ltd., Oulu,
Finland) covering the spectral range of 308–1105 nm, a high perfor-
mance CCD camera (DL-604 M, Andor, Ireland) with the effective
resolution of 1004 × 1002 pixels, a camera lens (OLE23, Schneider,
German), a light source system including two 150 W halogen lamps
(2900-ER, Illumination Technologies Inc., New York, USA) equipped
with a fiber optical line light located at an angle of 45° to illuminate
the moving platform operated by a stepping motor (IRCP0076-
1COMB, Isuzu Optics Corp., Taiwan, China), a computer with imaging
data acquisition software (Spectral Image software, Isuzu Optics Corp.,
Taiwan, China), which shows and regulates the exposure time, motor
speed, combining mode, wavelength range and image acquisition.
In this study, the working spectral range of this system was 308–
1105 nm with a spectral increment of about 1.5 nm between the con-
tiguous bands, thus producing a total of 501 bands. The spectral range
of 400–1000 nm was considered and used for analyses due to low
signal-to-noise out of this spectral range. Fig. 1 illustrates the schematic
diagram of main components of the VIS–NIR hyperspectral imaging
system.
2.4. Image acquisition and calibration

For each freezing–thawing cycle, thirty grass carp fillets were placed
on the moving platform and then transferred to the field of the vision
of the camera to be scanned line by line with the adjusted speed of
1.5 mm/s to coordinate with the image acquisition. Thus, a total of
120 hyperspectral images were produced, recorded and stored in a
raw format before being processed. Two thirds of the fillet samples
(80 fillets) were used as the calibration set and the rest of 40 samples
were regard as the prediction set. The relevant statistics information
of TVB-N value is illustrated in Table 1.

In order to minimize the effects of illumination and detector sensi-
tivity as well as the differences in camera and physical configuration
of the imaging system, the original acquired hyperspectral images (R0)
were necessary to be calibrated into the reflectance mode with two
extra images for black (B) and standard white (W) reference images.
The black image (~0% reflectance) was obtained by noting a spectral
image after fully covering the camera lens with its black cap. The
white reference image was acquired using a uniform Teflon white tile
(~99% reflectance). The calibrated image (RC) was calculated by the
following formula.

RC ¼ R0−B
W−B

� 100%: ð1Þ
2.5. ROI identification and spectra extraction

After image acquisition and reflectance calibration, the region of in-
terests (ROIs) with an ellipse shape within hyperspectral images were
recognized and selected based upon the important locations corre-
sponding to areas of the ten grams of grass carp fillets that were used
in the reference measurements. Then the extracted, averaged and re-
corded spectral data within ROIs for the samples were conducted by
using the software ENVI v4.8 (ITT Visual Information Solutions, Boulder,
CO, USA).
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2.6. Multivariable data analysis

The enormous spectral data extracted from hyperspectral images
contain a significant amount of useful information and certainly there
is some redundant information affecting the calibration. In order to im-
prove the predictive ability and reduce the variability between samples
due to scatter and optical interference possibly caused by water move-
ment in frozen storage, multiplicative scatter correction (MSC) as a
widely used spectral pre-processing technique was applied to
eliminate the undesirable scatter effect from the data matrix prior to
data modeling (Maleki, Mouazen, Ramon, & De Baerdemaeker, 2007;
Rinnan, Berg, & Engelsen, 2009; Zeaiter, Roger, & Bellon-Maurel,
2005). After spectral pre-processing, it is necessary to select a robust
and reliable analytical method to process and build a calibration
model for quantitative or qualitative analysis. In this study, the quanti-
tative calibration models between the spectral data and the TVB-N
values were established by partial least squares regression (PLSR) and
least squares support vector machines (LS-SVM), which was a typical
linear and a classical nonlinear modeling method, respectively. It is
well-known that PLSR, as one of the important and highly effectivemul-
tivariate data analysis methods, has been widely developed for estab-
lishment of mathematical model due to its better flexibility in some
conditions such as variable number more than sample number and
multicollinearity among X values (Abdi, 2010). Support vector ma-
chines (SVM) have been very successful in pattern recognition and
function estimation problems (Suykens, Vandewalle, & De Moor,
2001) and LS-SVM is an alternate and developed formulation of SVM,
which involves equality instead of inequality constraints and works
with a least squares cost function. LS-SVM has been introduced for the
optimal control of nonlinear systems (Chauchard, Cogdill, Roussel,
Roger, & Bellon-Maurel, 2004; Nicolaï, Theron, & Lammertyn, 2007;
Suykens, De Brabanter, Lukas, & Vandewalle, 2002). This methodology
utilizes nonlinear map function and map features into a high dimen-
sional space and adopts the Lagrange multiplier to compute the
partial differentiation of each feature to achieve the optical resolution
(Cawley & Talbot, 2002; Suykens et al., 2001). The execution step of
this algorithm was described in details by Chauchard et al. (2004) and
Suykens et al. (2001). The performances of the two established models
based upon PLSR and LS-SVM using the full spectral range were com-
pared and evaluated according to their capability of prediction. The pre-
dictive effectiveness, reliability and accuracy of the established models
were commonly assessed in terms of coefficients of determination and
root mean square errors in calibration, leave-one-out cross-validation
and prediction, respectively (R2C, R2

CV, and R2
P; RMSEC, RMSECV and

RMSEP). Most importantly, it has been proved that an admirable and
comparable prediction model should have higher values of R2

C, R2
CV,

and R2
P, and lower values of RMSEC, RMSECV and RMSEP as well as a

small difference between them. In this study, LS-SVM was carried out
using Matlab 2010a software (The MathWorks Inc., Mass, USA).

2.7. Optimal wavelength selection

Hyperspectral images of each fish fillet sample obtained by using
this hyperspectral imaging system within the working spectral range
of 400–1000 nm in this study were characterized as high dimensional-
ity with redundancy and multicollinearity among contiguous wave-
length bands, which to some extent resulted in the consequent time-
consuming calibration process and affected the speed of computation
related to the processing of the hyperspectral images. Thus, it is a critical
procedure to reject the useless or unnecessary wavelengths with irrele-
vant information and select optimal wavelengths carrying the most
valuable information that reflected the changes of TVB-N during multi-
variate analysis. However, selecting the optimal wavelengths (vari-
ables) from the whole spectral wavelength range is of difficulty due to
the fact that there is no universal variable selection method for wide
applications yet. Successive projections algorithm (SPA), as a forward
variable selection method, has been proved to be a useful and effective
tool and strategy for variable selection in the framework of multivariate
calibration with the aim of resolving the problem of colinearity with
minimal redundancy (Moreira, Pontes, Galvão, & Araújo, 2009; Pontes
et al., 2005; Xiaobo, Jiewen, Povey, Holmes, & Hanpin, 2010). This pop-
ular algorithm usually begins with one variable/wavelength, and then
incorporates a new one at each iteration, until a specified number N of
variables/wavelengths is reached (Ghasemi-Varnamkhasti et al.,
2012). The description and detailed implementation steps of this algo-
rithm was reported in the study of Araújo et al. (2001). In the current
study, SPA was used to choose the most important and sensitive
wavelengths, carrying the most abundant and valuable freshness quali-
ty information, which contributed to predicting TVB-N values for evalu-
ation of fish freshness quality. The procedure of SPA was conducted in
Matlab 2010a software (The MathWorks Inc., Mass, USA).

2.8. Visualization of chemical image

The total volatile basic nitrogen mainly involves the ammonia and
amines resulting from the degradation of proteins caused by the ef-
fects of enzymes and microorganisms activities and the content of
this important index can effectively reflect the loss of freshness qual-
ity. Therefore, visualization of TVB-N distribution is helpful to further
interpret the dynamical changes of the chemical compounds related
to protein decomposition for indication of the degree of freshness
loss. Hyperspectral imaging technique as a useful chemical imaging
tool is capable of visualizing the spatial distribution of chemical com-
ponents by generating the images or maps of concentration gradients.
In this study, the new selected optimized calibration model was used
to transfer and visualize every pixel of the hyperspectral images into
the chemical images for prediction of TVB-N distribution of the exam-
ined fish fillets. The received chemical images or visualized distribu-
tion map was exhibited in a linear color scale with different colors,
representing corresponding concentration of the predicted TVB-N in
the whole grass carp fillet, which is advantageous to adjudicate and
understand the variations of TVB-N content by checking the different
color distribution. All the procedures of visualizationwere achieved by
a computer program operated in the software Matlab 2010a (The
MathWorks Inc., Mass, USA). Fig. 2 describes the whole procedure of
the experiment by using hyperspectral imaging technique.

3. Results and discussion

3.1. Spectral characteristics of the fresh and treated fish fillet

Fig. 3 shows the average reflectance spectra extracted from the
grass carp fillets in hyperspectral images within the wavelength re-
gion of 400–1000 nm. In Fig. 3, it was obviously identified that a sim-
ilar tendency was displayed throughout the examined wavelength
region at different TVB-N values with the range of 7–17 mg N/100 g,
but there were some differences in the amplitude of variation of spec-
tral reflectance. This was possibly attributed to the changes of the
main chemical components during the freshness loss of grass carp fil-
let. According to the value of reflectance, a conspicuous and significant
absorption peak was positioned at just about 500 nm, possibly associ-
ated with the residue of organic feed ingredients such as soybean
meal, which was different from the reason of the absorption of carot-
enoids such as astaxanthin and canthaxanthin in salmon fillet muscle
(Kimiya, Sivertsen, & Heia, 2013). Another absorption peak located at
about 780 nm in the NIR region was mainly due to the third overtone
O\H stretching (He et al., 2013). Absorption bywaterwas observed as
a peak close to 970 nm was largely ascribed to the second overtone
O\H stretching (Wu & Sun, 2013; Zhu et al., 2012). Another interest-
ing peak centered nearly at 430 nmwas observed and there were few
reports about this specific wavelength in grass carp except the reason
of absorption by heme-pigment such as hemoglobin in cod fillets
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Fig. 2.Main steps of determination of TVB-N content in grass carp fillet using hyperspectral imaging. (a) Imaging pre-processing; (b) Spectral analysis; (c) Imaging post-processing.
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(Sivertsen et al., 2012). With respect to the possible reasons, it
would be associated with the wavelength calibration error or the
alignment of the instruments.

3.2. Prediction of TVB-N values based on the whole spectral
wavelength range

Throughout all the spectral dataset extracted from the hyperspectral
images of grass carp fillets and their relevant referencemeasured TVB-N
values, the prediction models were conducted and established based
upon PLSR and LS-SVM algorithms using the whole spectral wave-
lengths within the range of 400–1000 nm, respectively. With respect
to the predicted and measured values of TVB-N of fish fillet samples,
their corresponding quantitative relationship was also obtained and
shown in Table 2 and Fig. 4. It is clear that selecting a best calibration
model is of significance in spectral analysis and of great contributions
to the subsequent prediction. Therefore, in this study, the better fitted
calibration method was chosen by comparing the performances of the
two typical calibration methods. It can be seen from Table 2, when
PLSRwas used to build the calibrationmodel, the values of the three co-
efficients of determination (R2C, R2

CV, R2
P) were 0.927, 0.913, and 0.905,

respectively with the corresponding root mean square error (RMSEC,
RMSECV, and RMSEP) of 2.258, 2.634, and 2.749, accompanying with a
fairly small absolute deviation of 0.376, 0.491, and 0.115 between
them. The values obtained above displayed a better performance than
that of another study reported by He et al. (2013) for rapid analysis of
moisture distribution in farmed Atlantic salmon fillets using VIS–NIR
hyperspectral imaging, showing the values of 0.911, 0.897, and 0.893
Fig. 3. Average spectral features of the tested grass carp fillets at different TVB-N values.
using the same modeling approach. Additionally, in comparison with
the resultant PLSR model, a relatively better value was obtained by
using LS-SVM algorithm to establish the calibration model, in spite of
a minor increase of 0.007, 0.008, and 0.011 for R2

C, R2
CV and R2

P, but a
decrease of 0.271, 0.399, and 0.403 for RMSEC, RMSECV and RMSEP.
Therefore, according to the basic standard and requirement for evaluat-
ing the calibration models, it was confirmed that the model established
by LS-SVM approach using full spectral range had a better performance
than that by PLSR for prediction of TVB-N value of grass carp fillets. An-
other work reported by Wu, Peng (2012),Wu, Shi (2012), and Wu, Sun
(2012)who have also been convinced by the same results and indicated
that this modeling method was better and more effective for rapid pre-
diction of moisture content of dehydrated prawns using hyperspectral
imaging system. More importantly, the capability of predictive model
was proved to be accurate and robust by the acquired model and the
valuable data, and this hyperspectral imaging technique had the poten-
tial to have the ability of determining TVB-N values of fish fillets in a
non-destructive manner.

3.3. Prediction of TVB-N values based on only optimal wavelengths

In order to minimize the inessential and redundant information
obtained from the hyperspectral images and optimize and redesign
the structure of imaging detection system, it is obviously significant to
select the optimal wavelengths. SPA has been widely developed and
considered as one of the most effective methods in variable selection.
Therefore, in this study, this algorithm was conducted to choose the
most important wavelength variables carrying the most abundant and
valuable information related to the fish freshness quality from the
whole spectral range. As the result, nine wavelength variables (420,
466, 523, 552, 595, 615, 717, 850 and 955 nm) were elected as the op-
timal wavelengths, which were then used for subsequent prediction of
the TVB-N values of fish fillets. These selected wavelengths almost cov-
ered thewhole spectral range and possessed the advantages of minimal
redundancywith themost sensitive information.Meanwhile, theywere
mainly located upon the region of visible spectrum, such as 420 nm,
466 nm, 523 nm, 552 nm, 595 nm, 615 nm and 717 nm. However,
few reports were available to explain this phenomenon. The possible
reasons were allied to the variations of color and texture during the
freezing and thawingprocess. The selected importantwavelength locat-
ed at 955 nmwas ascribed to the water absorption band due to the fact
that water is the major component in the fish muscle. Another peak at
850 nm was usually assigned to the stretching overtones of C\H, and
N\H that was associated with protein, lipid and other organic compo-
sitions (Howard & Kjaergaard, 2006; Tarr & Zerbetto, 1989). Similar to
the modeling method based on the full spectral wavelength range, the



Table 2
Calibration and prediction results of the TVB-N value of grass carp fillet by hyperspectral imaging technique.

Calibration
model

Variable
number

No. of latent
variable

Calibration Cross-validation Prediction

R2
C RMSEC (%) R2

CV RMSECV (%) R2
P RMSEP (%)

PLSR 378 8 0.927 2.258 0.913 2.634 0.905 2.749
LS-SVM 378 / 0.934 1.987 0.921 2.235 0.916 2.346
SPA-PLSR 9 6 0.910 2.718 0.899 2.786 0.891 2.807
SPA-LS-SVM 9 / 0.918 2.246 0.912 2.401 0.902 2.782
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optimized PLSR and LS-SVM, also referred to as SPA-PLSR and SPA-LS-
SVM, were implemented to establish the innovative models for predic-
tion of freshness quality of grass carp fillets based upon the spectral in-
formation of nine optimal wavelengths and the statistical results are
illustrated in Table 2. The values of R2

C, R2
CV and R2

P were 0.910, 0.899
and 0.891, and 0.918, 0.912 and 0.902 based on the developed SPA-
PLSR and SPA-LS-SVMmodels, respectively. The corresponding absolute
deviations of root mean square error (RMSEC, RMSECV and RMSEP) are
shown to be 0.068, 0.0.089 and 0.021, and 0.155, 0.536 and 0.382, re-
spectively, which were better than the results reported by Cai et al.
(2011), who revealed that the values of R2

C, and R2
P were 0.840 and

0.808 for TVB-N content of pork meat using synergy interval PLSR algo-
rithm by Fourier transform near infrared spectroscopy. In addition, it
was easy to discover that from the resultant data, there were minor
differences among them, and the new simplifiedmodels using the opti-
mal wavelengths were comparable to the original models using the
R²P = 0.905
RMSEP = 2.749%
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Fig. 4. Predicted andmeasured TVB-N values for both the PLSR (a) and LS-SVM (b)models
under the whole spectral wavelengths range.
whole wavelengths. Furthermore, it was also noticed that the SPA-
PLSR model had poorer performance than the SPA-LS-SVM model that
showed better accuracy and robustnesswith higher coefficient of deter-
mination and smaller root mean square error. Therefore, it could be
seen from the above study that the novel developed models using
optimal wavelengths exhibited equivalent predictive effectiveness and
accuracy to the corresponding original models. Meanwhile, the opti-
mized LS-SVM was more powerful in predicting TVB-N values than
the simplified PLSR, which also demonstrated that SPA algorithm was
suitable and competent for selecting the informative variables in this
study. Therefore, SPA-LS-SVM was regarded as the best model using
the optimal wavelengths replacing the full wavelengths to predict the
TVB-N values for evaluation of freshness quality of the fresh and frozen
fish fillets.

3.4. Visualization of TVB-N distribution of fish fillet sample

In fact, the limits of the freshness of various fish species are imple-
mented with no unified standard based on TVB-N content in different
countries and regions. For example, according to Chinese standard GB
2733, 2733 (2005), for marine fish, the rejection limit of TVB-N content
is regarded as 30 mg N/100 g; for freshwater fish, the TVB-N content
cannot exceed 20 mg N/100 g. Therefore, in order to better interpret
the variations of TVB-N in different locations of fish fillets during frozen
storage and control the quality of fish products, visualization of TVB-N
distribution is obviously helpful and meaningful using a linear color
bar to exhibit different colors from blue (low value) to red (high
value) due to the fact that the pixels with similar spectral features in
the distribution map created a similar visualized color for matching
and representing the values of TVB-N. Therefore, in this study, the best
developed model based on SPA-LS-SVM using the optimal wavelengths
was considered as themost suitablemodel for TVB-Nmeasurement due
to its reliability and efficiency, andwas also used to transfer eachpixel of
the hyperspectral image to its corresponding TVB-N value for visualiza-
tion of TVB-N distribution in all spots of the grass carp fillets. Fig. 5
shows examples of visualization of TVB-N distribution map of fish fillet
at three different TVB-N values. It was visibly observed that different
colors in the visualized map reflected TVB-N contents in the fish fillet
sample corresponding to the spectral changes of image pixels. It was
also noticed that the density and intensity of TVB-N distribution of the
grass carp fillet sample were non-uniform and asymmetric due to the
fact that the total volatile basic nitrogen included all the compositions
of degradation of nitrogen-containing chemical compounds such as
proteins of fish muscle. Thus, the homogeneousness of TVB-N distribu-
tionwas contributed to the speed of degradation of these chemical com-
pounds. Some other possible reasonsweremainly related tofish species,
farming situations, feeding ingredients, and handling methods such as
high-pressure processing, freezing–thawing, chilling, cold storage tem-
perature and time (Cheng et al., 2013). In particular, the distribution of
TVB-N content illustrated in Fig. 5a (TVB-N = 8.26 mg N/100 g) and
Fig. 5b (TVB-N = 12.98 mg N/100 g) was fairly non-uniform along
with different locations of fish fillet samples. It was clearly identified
that the surrounding locations posed higher value than that of inner
locations attributing to the reasonable fact that the external parts
were subjected to the effects of activities of microorganisms and oc-
currence of autolysis. For example, in Fig. 5a, there is great extent of

image of Fig.�4


Fig. 5. Examples of visualization of TVB-N distribution map of fish fillet at three different TVB-N values. (a), (b) and (c) represent the TVB-N value of 8.26, 12.98, and 15.69 mg N/100 g,
respectively.
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low value of TVB-N in blue color, except some small regions showing
red color that indicated high value of TVB-N. However, Fig. 5c (TVB-
N = 15.69 mg N/100 g) shows moderately homogenous distribution
of TVB-N content in the same red color, implying that a great level of
degradation of chemical compounds occurred and consequently caused
severe loss of freshness quality of fish fillets. Thus, it was appropriate to
make certain the transformation process of TVB-N in the fish fillet dur-
ing frozen storage by contrasting different distribution maps of TVB-N
contents. Also, it was helpful and meaningful for further interpreting
the dynamic changes of freshness quality that directly determined the
acceptance of consumers. Most importantly, the results confirmed
that a great advantage of hyperspectral imaging technique is to provide
spatial information of the examined samples and to create the TVB-N
distribution maps for evaluating the fish quality of freshness, in order
to enhance fish quality control and ensure fish products safety. Addi-
tionally, it can be further inferred that this potential and innovative
technique is capable of sorting and discriminating the fresh and frozen
samples in the fish industry and evaluating the non-uniform distribu-
tion of fish samples due to the effects of different handling processes.
4. Conclusions

VIS–NIR hyperspectral imaging technique (400–1100 nm) in tan-
dem with PLSR and LS-SVM was conducted to determine the TVB-N
values of grass carp fillets for evaluation of fish freshness quality. The
prediction models were established based upon PLSR and LS-SVM
using the whole spectral wavelengths with high prediction ability with
strong correlations (R2P = 0.905, 0.916). In addition, it was further
shown that SPA was a useful variable selection method suitable for
choosing nine optimal wavelengths (420, 466, 523, 552, 595, 615, 717,
850 and 955 nm) for prediction of TVB-N values. The developed SPA-
LS-SVM calibration model using the nine selected wavelengths was su-
perior and advantageous than the simplified SPA-PLSR model with the
R2

P value of 0.902 and 0.891, respectively, which was equivalent to the
original models using the whole spectral wavelengths ranges. Addition-
ally, visualizationmaps of TVB-Ndistributionwere created usingpseudo
color for further understanding the loss of fish freshness during frozen
storage. The current results showed that this VIS–NIR hyperspectral im-
aging technique was an effective and powerful tool for rapid and non-
destructive determination and assessment of fish fillet freshness.
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