
Food Chemistry 160 (2014) 330–337
Contents lists available at ScienceDirect

Food Chemistry

journal homepage: www.elsevier .com/locate / foodchem
Combination of spectra and texture data of hyperspectral imaging
for prediction of pH in salted meat
http://dx.doi.org/10.1016/j.foodchem.2014.03.096
0308-8146/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Food Refrigeration and Computerised Food Technol-
ogy, Agriculture and Food Science Centre, University College Dublin, National
University of Ireland, Belfield, Dublin 4, Ireland. Tel.: +353 1 7167342; fax: +353 1
7167493.

E-mail address: dawen.sun@ucd.ie (D.-W. Sun).
URLs: http://www.ucd.ie/refrig, http://www.ucd.ie/sun (D.-W. Sun).
Dan Liu a, Hongbin Pu a, Da-Wen Sun a,b,⇑, Lu Wang a, Xin-An Zeng a

a College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, PR China
b Food Refrigeration and Computerised Food Technology, Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 17 October 2013
Received in revised form 21 February 2014
Accepted 19 March 2014
Available online 27 March 2014

Keywords:
Hyperspectral imaging
Spectra
Texture
Porcine meat
pH
GLGCM
This study was carried out to investigate the feasibility of combining spectral with texture features in
order to improve pH prediction for salted pork. Average spectra were extracted from the region of interest
(ROI) of hyperspectral images over the wavelength region of 400–1000 nm and 9 characteristic spectral
variables were then selected by principal components analysis (PCA). Meanwhile, gray-level gradient
cooccurrence matrix (GLGCM) analysis was implemented on the first PC image (accounted for 96% of
the total variance) to extract 13 textural feature variables. Partial least-squares regression (PLSR) was
developed for predicting pH based on spectral, textural or combined data. Coefficient of determination
(R2

P) of 0.794 for the prediction samples based on data fusion was achieved, which was superior to the
results based on spectra (R2

P = 0.783) or texture (R2
P = 0.593) alone. Hence, methods of combining

spectral with texture analyses are effective for improving meat quality prediction.
� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In the modern agri-food industry, quality is a key factor in
determining the success of the industry. Therefore significant
efforts have been made by the industry to enhance the quality of
agricultural and food products that they produce by applying
new technologies such as novel cooling (Sun, 1997; Sun, & Brosnan,
1999; Sun, & Zheng, 2006; Sun & Hu, 2003; Wang, & Sun, 2001; Hu,
& Sun, 2000), freezing (Delgado, Zheng, & Sun, 2009; Zheng & Sun,
2006), drying (Sun, 1999; Sun, & Byrne, 1998; Sun, & Woods,
1993;1994a;1994b;1994c;1997; Cui, Xu, & Sun, 2004) and edible
coating (Xu, Chen, & Sun 2001). In addition, great efforts have also
been made to utilise emerging techniques for product quality eval-
uation and assurance. Among these techniques, also known as
spectroscopic imaging, imaging spectroscopy or chemical imaging,
is concerned with the combination of conventional digital imaging
or computer vision (Du, & Sun, 2005; Jackman, Sun, Du, & Allen,
2008; Valous, Mendoza, Sun, & Allen, 2009) with spectroscopy to
conduct measurement, analysis, and interpretation of both spatial
and spectral information from a specific object simultaneously
(Elmasry, Barbin, Sun, & Allen, 2012c; Goetz, Vane, Solomon, &
Rock, 1985; Gowen, O’Donnell, Cullen, Downey, & Frias, 2007;
Lorente, Aleixos, & Gomez-Sanchis, 2012; Sun, 2010; Van der Meer
& De Jong, 2001). Although originally developed for remote sensing
applications, HSI has recently found increasingly widespread use
for quality and safety evaluation and control in the food industry
with remarkable improvements in information and data process-
ing techniques (Gowen, O’Donnell, Cullen, Downey, & Frias, 2007;
Sun, 2010; Magwaza, Opara, Nieuwoudt, Cronje, Saeys, & Nicolaï,
2012). This technique is considered as non-time-consuming and
non-destructive, with minimum human intervention. Conse-
quently, HSI has become an attractive choice among different
instrumental methods developed for the estimation of quality
attributes in meat and meat products (Elmasry, Barbin, Sun, &
Allen, 2012) including speedy evaluation of chemical (Barbin,
Elmasry, Sun, & Allen, 2013; Talens et al., 2013), microbiological
(Barbin, Elmasry, Sun, Allen, & Noha, 2012; Park et al., 2011) and
quality attributes (Kamruzzaman, Elmasry, Sun, & Allen, 2013;
Liu, Qu, Sun, Pu, & Zeng, 2013). Among many meat products
(Chabbouh, Hadj Ahmed, Farhat, Sahli, & Bellagha, 2012; de Paula,
Colet, de Oliveira, Valduga, & Treichel, 2011; Ferrentino, Balzan, &
Spilimbergo, 2013; Sánchez-Zapata, Díaz-Vela, Pérez-Chabela,
Pérez-Alvarez, & Fernández-López, 2013; Wesierska, Szołtysik, &
Rak, 2013; Zell, Lyng, Morgan, & Cronin, 2013), salted meat is
consumed in many countries due to its flavour and longer shelf life.
It is known that salt added to the meat system can promote protein
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extraction due to the high ionic forces in the media (Claus,
Jhung-Won, & Flick, 1994). Protein precipitation and solubilization
could induce a pH evolution in meat products throughout the salt-
ing process. Data of pH is closely related to the water holding
capacity and water loss in salted and dry cured meat (Hamoen,
Vollebregt, & Van der Sman, 2013). As an important meat quality
indicator, meat pH varies with meat genetic origin, ante-mortem
treatment, muscle and fibre type as well as manufacturing pro-
cesses, such as salting temperature, salting periods and salting
methods (Gou, Comaposada, & Arnau, 2002). Several studies have
shown that pH is a good predictor of the colour and drip loss of
meat. There is a high relationship between pH and moisture diffu-
sivity and mechanical and sensory textural properties in salted or
dry-cured meat (Gou et al., 2002; Guerrero, Gou, & Arnau, 1999;
Ruiz-Ramirez, Arnau, Serra, & Gou, 2006). Therefore, the pH value
is a fundamental datum to be monitored during the salting or mar-
ination process, because it gives a reasonably good indication of
the final meat quality. Previous studies have revealed the possibil-
ity of employing HSI to predict the pH in meat and meat products
(Qiao et al., 2007; Barbin, Elmasry, Sun, & Allen, 2012; Elmasry,
Sun, & Allen, 2012; Iqbal, Sun, & Allen, 2013. Elmasry, Sun, and
Allen (2012b) performed non-destructive HSI analysis of quality
attributes of beef and obtained a coefficient of determination
(R2

CV) of 0.71 and root mean square errors of cross-validation
(RMSECV) of 0.07 for predicting pH. Also Iqbal et al. (2013) develop
a HSI system in the near infrared (NIR) region (900–1700 nm) to pre-
dict pH in cooked, pre-sliced turkey hams, and with the selected
optimal wavelengths, a R2

CV of 0.81 and RMSECV of 0.02 was
achieved. Barbin et al. (2012) used the same system for pH predic-
tion of fresh pork meat and a R2

CV of 0.87 with RMSECV of 0.1 for
pH prediction was obtained by partial least square (PLS) regression
models. These studies reflected reasonable accuracy and robustness
of pH prediction models based on hyperspectral data. However, most
of these models were established based on spectral data without
incorporating information on spatial data. The importance of analyz-
ing spatial and spectral patterns simultaneously has been empha-
sized (Gupta, Chung, Srinath, Molfese, & Kook, 2005; Kotwal &
Chaudhuri, 2013; Plaza et al., 2009; Pohl & Van Genderen, 1998;
Polidori & Mangolini, 1996) and several authors (Huang, Zhao, Chen,
& Zhang, 2013; Nanyam, Choudhary, Gupta, & Paliwal, 2012; Wang,
Huang, & Zhu, 2012; Zhu, Zhang, He, Liu, & Sun, 2013) have at-
tempted to explore the feasibility of data fusion to improve the per-
formance of hyperspectral prediction models related to food
analysis. Nanyam et al. (2012) developed a multi-band decision-
fusion strategy for improving the performance of hyperspectral-
imaging based fruit inspection systems. Decision-fusion techniques
were employed to combine the decisions of selected univariate clas-
sifiers and as a result better classification was achieved for bruise
detection in strawberries. Wang et al. (2012) also developed a fusion
model using uninformative variable elimination (UVE)-PLS and
supervised affinity propagation (SAP)-PLS models coupled with
backpropagation neural network. A better prediction accuracy
(RP = 0.828 and RMSEP = 5.53 N) was achieved for apple firmness
prediction. In addition, Zhu et al. (2013) used a visible and near
infrared HSI system to differentiate between fresh and frozen–
thawed fish based on combined spectral and textural variables by
least squares-support vector machine classification models. An aver-
age correct classification rate of 97.22% for the prediction samples
was achieved, which was superior to the results based on either
spectral or textual information. Recently, the feature variables from
spectral and image information of hyperspectral image datacube
were also fused for rapid detection of total viable count (TVC) in pork
meat (Huang et al., 2013). The back propagation artificial neural net-
work (BP-ANN) model based on data fusion was better than models
based on spectral or image variables, which was achieved with root
mean square errors of prediction (RMSEP) of 0.243 lg CFU/g and
coefficient of determination (R2
P) of 0.8308 in the prediction set. This

demonstrates that HSI combined with data fusion would be more
useful for non-destructive analysis and predictions.

The main focus of the current research was to make a fusion of
the spatial and spectral information space of the hypercube to im-
prove pH prediction of pork in a salting process. It is known that
the amount of information derived from the hyperspectral data-
cube requires the use of data fusion technique to take advantage
of the complementarities that both sources of information can pro-
vide. Therefore, the specific objectives were to (1) extract spectral
data from hyperspectral images of salted pork slices acquired in
the NIR range (400–1000 nm); (2) identify the most significant
spectral characteristic variables; (3) extract texture feature vari-
ables from characteristic images; (4) combine spectral with texture
variables by feature level fusion, and (5) build new quantitative pH
prediction models with spectra, textural and combined variables
by PLSR.
2. Materials and methods

The main steps of the experimental procedure are presented in
Fig. 1, which are mainly composed of image acquisition and
preprocessing, spectral and textural extraction, feature integration
and normalization and PLS analysis. Details of experimental
procedures are introduced below.

2.1. Meat sample preparation

In this study, one hundred and fifty-two pork slices (7 mm)
from the same anatomical locations (longissimus dorsi) of three
pig carcasses were prepared manually, and meat slices were
trimmed to nearly the size (90 mm � 60 mm � 7 mm) by a meat
cutting knife. Visible fat and connective tissues were weeded out.
Salting treatment was conducted by employing 30% NaCl (w/w)
on the meat slices at room temperature of 25 �C for different salt-
ing stages (0, 15, 60, and 150 min). After salting treatment, visible
fat and connective tissues were weeded out and surface moisture
was wiped by paper towels before image acquisition. Prior to the
analysis of the samples and model development, all samples were
divided into two subsets, namely, calibration set consisting of 100
samples (25 samples � 4 periods) and validation set consisting of
52 samples (13 samples � 4 periods). Samples in the calibration
set were used to establish the model, while samples in the predic-
tion set were applied to verify the robustness of the established
model. pH was measured randomly at four different locations
across the sample surface with a pH meter (205-pH, Testo Instru-
ments International Trading Co., Ltd., Shanghai, China). The aver-
age of the four pH readings was used to represent the ultimate
pH value of the sample.

2.2. Hyperspectral imaging system and image processing

Prior to image acquisition, the hyperspectral imaging system
was opened for preheating for 30 min. At the same time, meat
slices were put onto the translation stage driven by a stepper mo-
tor (IRCP0076-1COMB, Isuzu Optics Corp., Taiwan, China) and go
through the field of view (FOV) of the spectrograph (Imspector
V10E, Spectral Imaging Ltd., Oulu, Finland) with an optimized
speed of 1.5 mm s�1 the exposure time of CCD camera was set to
30 ms. Sample images were taken when the light provided by
two tungsten-halogen lamps (3900-ER, Illumination Technologies
Inc., New York, USA) were reflected from the meat surface, dis-
persed in a spectrograph, projected to a CCD camera (DL-604M,
Andor, Ireland) and then transformed into a digital signal by image
acquisition software (Spectral Image Software, Isuzu Optics Corp.,



Fig. 1. Flowchart of main steps in data fusion analysis for predicting pH of meat product.
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Taiwan, China) installed on a personal computer. The working
spectral range of the system is 308–1105 nm with a spectral
resolution of about 1.5 nm between the contiguous bands, thus
producing a total of 501 bands. The system scans a single spatial
line of the sample, and the reflected light was dispersed by the
spectrograph in spatial–spectral axis. Once a sample entered the
FOV, the hyperspectral data was captured and sent to the PC
through a USB port for storage.

To correct dark current effect of the camera, each raw hyper-
spectral image was corrected by the following equation:

Rc ¼
Rr � B
W � B

� 100% ð1Þ

where Rc is the reflectance of corrected hyperspectral image, Rr is
the reflectance of the raw hyperspectral image, B is the dark current
image (�0% reflectance) acquired with the camera lens completely
covered with its opaque cap, W is the white reference image
(�99.9% reflectance) acquired for a standard Teflon calibration tile.

2.3. Spectral variables extraction

Due to the low signal-to-noise ratio at the starting and ending
spectral region, only spectra within the range of 415–1000 nm
were employed for spectral variable extraction. After image acqui-
sition and calibration, the region of interests (ROIs) can be easily
identified based on segmentation with a simple thresholding due
to the distinctive spectral differences between meat sample and
background spectrum. For each of the calibrated images, a mask
was created by thresholding a gray image that was produced by
subtracting the image at band 91 (of low reflectance value) from
the image at band 255 (of high reflectance value). The resulted im-
age was then segmented by a simple thresholding of 0.149, which
was determined by creating a histogram. A region of interest (ROI)
with a size of 300 � 200 pixels around the center of the image was
selected for extracting reflectance spectra which was transformed
into an absorbance profile by,

A ¼ �log10Rc ð2Þ

where A is absorbance.
Principal component analysis (PCA) was used to select the

optimum spectral variables. PCA is a common technique for
dimension reduction and variable selection in multivariate data
analysis (Liu, Zeng, & Sun, 2013a). In the processing of hyperspec-
tral images, the spectral data matrix is decomposed by PCA into a
product of a loading matrix, a score matrix and a residual matrix
(Jolliffe, 2002). The scores of PCA represent the weighted sums of
the original variables, and the loadings of PCA are the weighting
coefficients for each variable (wavelength) at each principal
component and can be used to identify important variables
(wavelengths). In this way, wavelength selection contributes in
reducing the number of spectral variables which are irrelevant
and have minor impact on data variation. Background segmenta-
tion and extraction of reflectance spectra from the hyperspectral
images was carried out using the software ENVI 4.8 (ITT Visual
Information Solutions, Boulder, CO, USA). PCA was performed with
the aid of chemometric software (Unscrambler version 9.7, CAMO,
Trondheim, Norway).

2.4. Textual variables extraction

Gray-level-gradient co-occurrence matrix analysis (GLGCM) is a
texture analysis technique, which captures the second order
statistics of gray level gradients. GLGCM characterizes typically
the spatial relationships of two basic elements of an image: gray
and gradient and can depict effectively texture characteristics by
the change of the gradient of gray levels (Hong, 1984). GLGCM
was implemented on the first PC score image to extract textural
feature variables. A total of 13 s-order statistical textural variables



Fig. 2. The mean absorbance curves for salted meat in wavelength range of 400–
1000 nm.
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(energy, correlation, hybrid entropy, inertia, gray mean, grads
mean, gray entropy, grads entropy, gray standard deviation, grads
standard deviation, inverse difference moment, small grads
dominance, and big grads dominance) were extracted from the
first PC image in this study. The calculation of textural variables
for all ROI images of all samples produced a textural matrix of
152 samples � 13 variables. The GLGCM parameters were
calculated using a program written in Matlab (Version 9, The
Mathworks Inc., Massachusetts, USA).

2.5. Features integration

Data fusion aims at combining disparate with complementary
data from multisource imagery to obtain more information from
the images as well as to improve reliability of operational perfor-
mance. Generally, data fusion can be performed at three different
processing levels: pixel level fusion, feature level fusion and deci-
sion level fusion (Pohl & Van Genderen, 1998). Pixel level fusion
is the direct merging of the original data in various data sources
and requires immense data calculation; fusion at feature level re-
quires the extraction of feature variables and then fuses for further
assessment using statistical approaches such as arithmetic combi-
nations, filters, regression variable substitution and wavelets in a
multi resolution image; and decision level fusion is based on a
pre-knowledge of the observed object and combining the extracted
information by applying decision rules to achieve the required
results (Huang et al., 2013; Pohl & Van Genderen, 1998). To avoid
the huge data preprocessing and potential information losses, the
feature variables from spectral and image information of hyper-
cube were fused by feature level fusion for further analysis.

Another relevant issue in order to make full use of the benefits
of data fusion is to overcome the problem of the large disparity in
values among the feature parameters (Mendoza, Lu, Ariana, Cen, &
Bailey, 2011). A potential problem during the data fusion
procedure is that a large-value parameter would hide the
predicting power of smaller value parameter(s), which may be as
important as, or even more important than large-value parame-
ter(s). In the current study, a classical mean normalization proce-
dure was applied to rescale the difference in values of the
absorbance spectra and texture feature as follows:

YN;i ¼ Yi=Y ð3Þ

where YN,i denotes the normalized parameter for sample i, Yi is the
original parameter for sample i and Y is the mean value. This nor-
malization procedure was applied to both calibration and validation
sets and resulted in a similar scale of values. Partial least squares
(PLS) method was then applied to develop pH calibration models
using the integrated features.

2.6. PLS prediction model

PLS regression is a popular chemometric method for building
calibration models, which suit constructing empirical predictive
models when the experimental factors are numerous and highly
collinear (Wold, Sjostrom, & Eriksson, 2001). The quantitative
models between pH and feature data extracted from porcine meat
at different salting periods were established using partial least
squares regression (PLSR). The feature data utilized here included
four categories, i.e., full-wavelength spectra and simplified spectra
selected by PCA; textural variables calculated by GLGCM and fused
features. Therefore, four categories of PLSR calibration models
were built. The quality of calibration models were evaluated by
root mean squared errors for calibration, cross-validation as well
as prediction (RMSEC, RMSECV and RMSEP, respectively), and
coefficients of determination for calibration, cross-validation and
prediction (R2
c, R2

CV and R2
P, respectively). All computations and

multivariate data analysis was performed by Unscrambler chemo-
metric software (Version 9.7, CAMO, Trondheim, Norway).
3. Results and discussion

3.1. Spectral features of salted meat

Fig. 2 shows mean VIS/NIR absorbance curves in the range of
400–1000 nm for pork meat collected during the salting stages.
The general trends of the spectral curves were similar. It was also
noticed that the fresh meat (salted 0 min) differed to a large extent
from the other three salted samples in the magnitude of absor-
bance possibly due to the water loss during salting process. The
absorbance on the wavebands from 540 to 580 nm is associated
with respiratory pigment (Qiao et al., 2007). The absorption bands
due to the presence of water in the meat could be clearly observed
at 750 and 970 nm, which arose from combination of symmetric
and antisymmetric O–H stretching and bending modes (Liu et al.,
2013). More specifically, during the salting of meats, salt diffusion
caused tissue damage and texture alteration, as well as the disrup-
tion and leakage of various cellular organelles. The existence of
these differences and changes suggested that it might be possible
to predict pH by spectroscopic and textural analysis of hyperspec-
tral images.

3.2. Selection of optimum characteristic image and optimal spectral
variables by PCA

Texture features exhibited in hyperspectral images vary with
both spectral and spatial parameters, so the selection of gray level
images is important to obtain good prediction accuracy. PCA was
first carried out for all ROI images to reduce spectral dimension,
with several principal components (PCs) accounting for the most
variances of all spectral bands. Fig. 3a shows the score plots of
the first two PCs from PCA conducted on the full spectral data of
salted meats. It was found that the majority of the variance was
captured by the first three PCs, as shown in the score plot, where
PC1, PC2, and PC3 explained 96%, 2% and 1% of variance, respec-
tively. Thus, the first principal component (PC1) image could be
used as the best representation of the original sample and was se-
lected for the textural information extraction in each ROI image,
leading to 13 textural variables (Table 1) being extracted by
GLGCM from the PC1 score image. Also, a plot of variances with re-
spect to the number of PC was presented in Fig 3b. The variance of
the first three PCs could explain more than 95% of the total vari-
ance. So it was not necessary for the consideration of more than
three PCs.



Fig. 3. (a) Representation of the score plots of PCA. (b) Plot of variances with respect to the number of PC. (c) Loadings of the first three PCs showing the selected wavelengths.

Table 1
Texture features extracted from GLGCM matrix.

Feature Equation

Small grads dominance
T1 ¼

Pn
i¼1

Pn
j¼1

Hði;jÞ
j2

" #, Pn
i¼1

Pn
j¼1

Hði; jÞ
" #

Big grads dominance
T2 ¼

Pn
i¼1

Pn
j¼1

j2Hði; jÞ
" #, Pn

i¼1

Pn
j¼1

Hði; jÞ
" #

Energy
T3 ¼

Pn
i¼1

Pn
j¼1

Pði; jÞ½ �2

Inertia
T4 ¼

Pn
i¼1

Pn
j¼1
ði� jÞ2 � Pði; jÞ

Gray entropy
T5 ¼ �

Pn
i¼1

Pn
j¼1

Pði; jÞ
" #

� log
Pn
j¼1

Pði; jÞ
" #( )

Grads entropy
T6 ¼ �

Pn
j¼1

Pn
i¼1

Pði; jÞ
" #

� log
Pn
i¼1

Pði; jÞ
" #( )

Hybrid entropy
T7 ¼ �

Pn
i¼1

Pn
j¼1

Pði; jÞ � log Pði; jÞ

Gray mean
l1 ¼

Pn
i¼1

i �
Pn
j¼1

Pði; jÞ
" #

Grads mean
l2 ¼

Pn
j¼1

j �
Pn
i¼1

Pði; jÞ
" #

Gray standard deviation
@1 ¼

Pn
i¼1
ði� l1Þ

2 Pn
j¼1

Pði; jÞ
" #( )1=2

Grads standard deviation
@2 ¼

Pn
j¼1
ði� l2Þ

2 Pn
i¼1

Pði; jÞ
" #( )1=2

Correlation
T8 ¼ 1

@1@2

Pn
i¼1

Pn
j¼1
ði� l1Þðj� l2ÞPði; jÞ

Inverse difference moment
T9 ¼

Pn
i¼1

Pn
j¼1

1
1þði�jÞ2

Pði; jÞ
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The loadings resulting from PCA could be used to identify opti-
mal variables (wavelengths) that were responsible for the specific
features appeared in the corresponding scores. The loadings of PC1,
PC2 and PC3 were used for wavelength selection as shown in
Fig. 3c. The wavelengths corresponding to peaks and valleys at
these particular principal components were selected as optimum
wavelengths. PC1 explained 96% of the total variance in the sam-
ples but the loadings of the first PC had small variances, thus no
wavelength was selected from this component. On the other hand,
the maxima and minima of the loadings from the second and third
PCs were opposite, resulting in the selection of a total of nine
important wavelengths (445, 485, 533, 566, 578, 600, 636, 759
and 959 nm). The nine selected optimal wavelengths had minimal
redundancy and were used for predicting the pH values of salted
pork samples.

3.3. Prediction of pH using PLSR models

The prediction of meat pH value was performed by using PLSR,
in which an independent variable pH was predicted from full
spectral variables (371 wavelengths), optimal spectral variables
(9 wavelengths), textural variables (13 textures) and combined
feature variables (9 wavelengths and 13 textures). Table 2 shows
the main statistics used to evaluate the performance of the
developed calibration, cross-validation and prediction models for
predicting pH of the examined pork samples. To visualize graphi-
cally the performance of the PLSR models, the measured values ob-
tained from the laboratory measurements and its predicted values
resulting from the four established PLSR models in prediction set
are plotted and displayed in Fig. 4. The PLSR model based on full
spectra exhibited a good capability to predict pH with the highest
correlation coefficients of 0.856, 0.847 and 0.797 as well as the
lowest RMSEs of 0.074, 0.077 and 0.085 for calibration cross-vali-
dation and prediction, respectively (Table 2). Although the pH can-
not be measured directly by the HSI system as in the case with H+
sensitive electrodes, the analysis can be realized by registering the
differences in absorbance patterns due to the probably increased
solubility of meat compounds such as free amino acids, peptides,
proteins, minerals, lactate and lactic acid with increasing salting



Table 2
Performance of PLSR (full and simplified) for the prediction pH of salted meat with different characteristic information.

Model No. of LV Calibration Cross-validation Prediction

variable R2
c RMSEC R2

CV RMSECV R2
P RMSEP

Model based on full spectra 371 3 0.856 0.074 0.847 0.077 0.797 0.085
Model based on optimal spectra 9 7 0.842 0.0776 0.834 0.0804 0.783 0.088
Model based on textures 13 6 0.643 0.1166 0.625 0.1207 0.593 0.1209
Model based on data fusion 384 4 0.855 0.074 0.845 0.078 0.796 0.085

22 6 0.853 0.0748 0.841 0.0786 0.794 0.086

Fig. 4. Measured and predicted pH values for validation sets by PLS methods using four models. (a) model based on full spectra; (b) model based on optimal spectra; (c)
model based on image; (d) model based on data fusion.
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time (Goli, Bohuon, Ricci, & Collignan, 2012). Consequently, a
change of pH levels in the meat might be expected during salting
process. Although the accuracy of PLSR model based on optimal
spectra was slightly reduced in pH prediction (Fig. 4b), the imple-
mentation of a fewer number of wavelength variables could reduce
the time required for image acquisition, for example the total
acquisition time of about 3.5 s can reduce to only 0.09s if the ac-
quired bands number change from 371 bands to 9 bands. Thereby
improving data acquisition and processing speed. Compared to
models based on spectral data, the model based on image informa-
tion has a lower prediction performance with the correlation coef-
ficients of 0.593 and RMSEP of 0.121 (Fig. 4c). This might be
because the spectral data had greater contribution than the tex-
tural features in building the PLSR model. Spectral information
can explain the internal attributes (chemical compositions, tissue
structure, etc.) in pork meat, which are closely related to pH
changes, while textural changes occurred during the salting pro-
cess do not have significant correlation with the pH evolution,
hence, the prediction result is not very satisfying (see Fig. 4c). As
for the model based on data fusion, which combined both the
external and internal attributes in pork meat, it could explain more
fully the pH change in pork meat, leading to better prediction re-
sults (see Fig. 4d). The predictability of pH obtained by data fusion
in this study was higher than those obtained by Qiao et al. (2007)
using pork with rp = 0.55 and RMSEP = 0.21; by Elmasry et al.
(2012b) using beef with R2
CV = 0.71 and RMSECV = 0.07 and by Iqbal

et al. (2013) for cooked, pre-sliced turkey hams with R2
CV = 0.81 and

RMSECV = 0.02. However, the performance of the developed pH
prediction model was inferior to that obtained by Barbin, Elmasry,
Sun, and Allen (2012a) for pork with R2

CV = 0.87 and RMSECV = 0.1.
These differences could be due to the different spectral range, sam-
ple origin and feature extraction methods with respect to pH predic-
tion. Although the improvement by integration of spectral with
textural features was limited, it is still interesting and encouraging
for further research to investigate the correlation of other meat qual-
ity and fused feature extracted from hyperspectral images.

4. Conclusions

Salting is the stage to be controlled and modified to obtain a fi-
nal product of the appropriate quality. In this research, spectral and
image information from hyperspectral datacube was combined for
determining pH of porcine meat during the salting process. Results
showed that the combination of spectra and texture features was
more effective than when the spectra or texture features were used
alone for evaluating meat pH. A R2

P of 0.794 and RMSEP of 0.086
were obtained based on combined feature of spectra with texture.
However, pH prediction with texture variables selected by GMGLC
was poor with R2

P of 0.593. More efforts should be directed on
advanced textural feature extraction methods such as run length
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matrix, multi-resolution wavelet transform and directional fractal
dimension analysis. Additional work to identify the nature of the
meat compounds solubilised during the salting process and the
development of more appropriate data fusion methods for estab-
lishing robust prediction models would constitute a step towards
an accurate pH prediction.
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